

PLEASE DO NOT REMOVE FROM LIBRARY

- .

Bureau of Mines Report of Investigations/1986

Electrochemical Determination of Thermodynamic Properties of NiCr₂O₄ and CoCr₂O₄

By Seth C. Schaefer

UNITED STATES DEPARTMENT OF THE INTERIOR

Report of Investigations 9043

Electrochemical Determination of Thermodynamic Properties of NiCr₂O₄ and CoCr₂O₄

By Seth C. Schaefer

UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary

BUREAU OF MINES Robert C. Horton, Director

Library of Congress Cataloging in Publication Data:

- 15 Kile

Electroche NiCr ₂ O ₄ and	mical determination $C_{2}O_{4}$.	ion of	the	rmodynamic	properties of
(Report of inve	stigations; 9043)				
Bibliography: p	o. 10 -11 ,				
Supt. of Docs.	no.: 1 28.23:9043.				
1. Nickel chron II. Series: Repor	nite – Thermal propertie t of investigations (Uni	s, 2. Cobai ted States	lt chr . Bur	romite – Thermal reau of Mines); 90	properties. I. Title. 43.
FN23 1143	[QD181.N6]	622	s ſ	546'.625241	86-600151

CONTENTS

-

,

Abstract	1
Introduction	2
Experimental work	2
Materials	2
Apparatus and procedure	2
Results and discussion	3
NiCr ₂ 0 ₄	3
$\operatorname{CoCr}_2^{-}O_{\mu}$	7
Summary and conclusions	10
References	10

ILLUSTRATIONS

1.	High-temperature galvanic cell	2
2.	Emf (E) versus temperature for NiCr ₂ O ₄ cell	4
3.	Equilibrium diagram for the Ni- Cr_2O_3 -Ni Cr_2O_4 system	5
4.	Standard Gibbs energy change for $Ni(c) + 2Cr(c) + 2O_2(g) = NiCr_2O_4(c)$	6
5.	Emf (E) versus temperature for CoCr ₂ O ₄ cell	8
6.	Equilibrium diagram for the $Co-Cr_2O_3-CoCr_2O_4$ system	8
7.	Standard Gibbs energy change for $Co(c) + 2Cr(c) + 2O_2(g) = CoCr_2O_4(c)$	9

TABLES

1.	Impurities detected in reagents	3
2.	Emf (E) of cell Pt, Ni, Cr_2O_3 , $NiCr_2O_4//ZrO_2//Cu_2O_3$, Cu, Pt	4
3.	Thermodynamic data for Ni(c) + $Cr_2O_3(c)$ + 0.5 $O_2(g)$ = Ni $Cr_2O_4(c)$	6
4.	Standard Gibbs energy of formation $(-\Delta Gf^{\circ})$ for $NiCr_2O_4$	6
5.	Emf (E) of cell Pt, Co, Cr_2O_3 , $CoCr_2O_4//ZrO_2//Cu_2O_7$, Cu, Pt	7
6.	Thermodynamic data for $Co(c) + Cr_2 O_3(c) + 0.5 O_2(g) = CoCr_2 O_4(c)$	9
7.	Standard Gibbs energy of formation ($-\Delta Gf^{\circ}$) for $CoCr_2 O_4$	10

Page

UNITS OF MEASURE ABBREVIATIONS USED IN THIS REPORT							
atm	atmosphere	kcal/mol	kilocalorie per mol				
cal	calorie	kPa	kilopascal				
cal/mV	calorie per millivolt	min	minute				
cm ³ /min	cubic centimeter per minute	mm	millimeter				
g	gram	mV	millivolt				
h	hour	Pa	pascal				
J	joule	wt pct	weight percent				
К	kelvin						

٦

.

97 4

and a share with a second with the second se

Con the second state and state and

ELECTROCHEMICAL DETERMINATION OF THERMODYNAMIC PROPERTIES OF NiCr₂O₄ and CoCr₂O₄

By Seth C. Schaefer'

ABSTRACT

The Bureau of Mines investigated the standard Gibbs energies of formation ΔGf° , for NiCr₂O₄ (nickel chromite) and CoCr₂O₄ (cobalt chromite). High temperature galvanic cells employing stabilized ZrO_2 (zirconia) as the solid electrolyte were used to measure the open-circuit potentials for the cell reactions

 $Ni(c) + Cu_2O(c) + Cr_2O_3(c) = 2Cu(c) + NiCr_2O_4$

and

and

$$Co(c) + Cu_2O(c) + Cr_2O_2(c) = 2Cu(c) + CoCr_2O_{l_1}$$

Equilibrium oxygen pressures for the $Ni-Cr_2O_3-NiCr_2O_4-O_2$ system were determined from the electromotive force (emf) measurements and are expressed as

 $\log pO_2 = -25,164/T + 8.62584; (1,172.8-1,260.0 K),$

where pressure (pO_2) is in atmospheres (1 atm = 101.325 kPa) and temperature (T) is in kelvins. Similarly, equilibrium oxygen pressures for the Co-Cr₂O₃-CoCr₂O₄-O₂ system are expressed as

 $\log pO_2 = -40,877/T + 17.15372; (1,173.5-1,256.3 K).$

Standard Gibbs energies of formation expressed in kilocalories per mol (1 cal = 4.184 J) of NiCr₂O₄ and CoCr₂O₄ were derived from these measurements and auxiliary data from the literature. The results are expressed as follows:

 $\Delta Gf^{\circ}(NiCr_{2}O_{4}) = (-324 \cdot 171 + 79 \cdot 51 \times 10^{-3} T) \pm 0.403 \text{ kcal/mol};$ $(1,172 \cdot 8 - 1,260 \cdot 0 \text{ K})$ $\Delta Gf^{\circ}(CoCr_{2}O_{4}) = (-360 \cdot 119 + 99 \cdot 02 \times 10^{-3} T) \pm 0.405 \text{ kcal/mol};$ $(1,173 \cdot 5 - 1,256 \cdot 3 \text{ K}).$

¹Metallurgist, Albany Research Center, Bureau of Mines, Albany, OR (retired).

Thermodynamic properties of NiCr₂O₄ and $CoCr_2O_{\mu}$ were investigated by the Bureau of Mines as a part of its program to expand the base of scientific information needed to devise innovative technologies. Accurate thermodynamic data of chromites are required for assessment of slag-metal equilibria, refining of metals, metalrefractory interactions, and also to provide a basis for construction of equilibrium phase diagrams. A review of existing data for NiCr₂0₄ $(1-5)^2$ and $CoCr_2O_{\mu}$ (1, 4, 6-7) shows considerable disagreement, even in results of investigations that used essentially the same technique to measure the Gibbs energies of formation.

Application of stabilized $2rO_2$ as a selective solid-anion electrolyte has been demonstrated in determination of Gibbs energies for cell reactions involving metal-metal oxide systems at elevated temperatures (8). Within the limitation of the ionic domain of stabilized ZrO_2 , any equilibrium involving oxygen may be investigated by this technique (9). The method is based on the measurement of the difference in the chemical potential of oxygen between a reference electrode of known oxygen potential and an electrode of unknown oxygen potential. The relationship between the open-circuit potential of the cell and the Gibbs energy for the actual cell reaction is

$$\Delta G$$
 (reaction) = -nFE, (1)

where ΔG is the change in Gibbs energy for the cell reaction, n is the number of electrochemical equivalents in the reaction, F is the Faraday constant (23.061 cal/mV equivalent), and E is the emf in millivolts. The transference number of oxygen is essentially unity in the range of oxygen potential of this investigation (9). The standard states are the saturated coexisting phases.

EXPERIMENTAL WORK

MATERIALS

High-purity reagents were obtained from commercial sources and used without further purification. Analyses of these reagents were confirmed and are presented in table 1. Ultra-high-purity argon was passed through $Mg(ClO_4)_2$ (magnesium perchlorate) and purified of residual oxygen by passing over hot titanium-zirconium chips to provide an inert atmosphere in the cell for the electrodes.

APPARATUS AND PROCEDURE

Internal arrangement of the cell is illustrated in figure 1. The apparatus, potentiometer, and standardized thermocouple have previously been described (10). NiCr₂O₄ and CoCr₂O₄ were synthesized by heating equimolar mixtures of the component oxides at 1,650 K in air for 3 days. Repeated cycles of grinding and heating were required to ensure complete reaction. Homogeneity was checked and verified by X-ray diffraction analyses. The electrode mixtures were prepared by blending NiCr₂O₄, Cr₂O₃, and Ni or CoCr₂O₄, Cr₂O₃, and Co in 2:1:1 ratios by weight. These electrode mixtures were heated for 1 day at 1,575 K in an argon atmosphere. X-ray diffraction analyses confirmed the phase composition.

FIGURE 1.-High-temperature galvanic cell.

²Underlined numbers in parentheses refer to items in the list of references at the end of this report.

Reagent and		Reagent and		Reagent and	
impurity elements	wt pct	impurity elements	wt pct	impurity elements	wt pct
Cu:		Cr ₂ 0 ₃ :		Co0:	
A1	<0.01	Fe	0.006	A1	0.29
Н	.0033	Na	.18	Cu	•26
0	.0913	Pb	.05	Pb	<.02
Si	<.01	V	.043	Mg	•08
Cu ₂ 0:		Ni:		Mn	•04
	<.003	Co	.045	Ni	.39
Fe	<.01	N10:		Si	.18
Ni	<.03	None	NAp	Na	•62
		Co:	_		
		Ni	.09		

TABLE 1. - Impurities¹ detected in reagents

NAp Not applicable.

¹Impurities not detected by spectrochemical analyses, except as noted in the table, were Ag, Al, As, B, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, Sb, Si, Sn, Ta, Ti, V, W, Y, Zn, and Zr.

The reference electrode, consisting of 2 to 3 g of a 1:1 mixture of $Cu + Cu_2O_1$, was placed in an Al₂O₃ crucible surrounding the ZrO₂ electrolyte tube that contained the three-phase chromite electrode. Approximately 100 mm of 60-mesh granular, fused Al₂O₃ was placed above the three-phase chromite electrode. Preliminary tests showed that this cover improved the cell operation by retaining the equilibrium oxygen pressure generated at the interface of the electrode and the electrolyte. The assembled cell was purged with argon and then evacuated before being backfilled with argon. Cells were operated at a positive pressure of approximately 30 Pa, and argon flow was approximately 15 cm³/min. Cells were

heated to 1,173 K and permitted to stabilize for 16 h. Emf measurements were made with a Keithley³ model 642 high-input-impedance digital electrometer. Approximately 8 to 16 h were required to achieve equilibrium potentials. Reversibility of the cell was checked by apabove and proaching equilibrium from below a specified temperature. Cell response was slow to achieve equilibrium with decreasing temperatures. After completion of the test, the cell was dismantled and the electrodes were sampled for analyses by X-ray diffraction. Reproducibility was checked by obtaining measurements of several cells for each determination.

RESULTS AND DUSCUSSION

NiCr₂O₄

The equilibrium oxygen pressure for the $N1-Cr_2O_3-NiCr_2O_4-O_2$ system and standard Gibbs energy of formation of $NiCr_2O_4$ were determined by measuring the potentials of the high-temperature galvanic cell

Pt, Ni, Cr_2O_3 ,

 $NiCr_2O_4//ZrO_2//Cu_2O_1$, Cu, Pt

with the overall cell reaction

$$Ni(c) + Cr_2 O_3(c) + Cu_2 O(c)$$

= 2Cu(c) + NiCr_2 O_4(c). (2)

Potential measurements from five cells that were used for the $NiCr_2O_4$ determination are given in table 2. These results may be expressed as a function of temperature by the least squares equation

³Reference to specific equipment does not imply endorsement by the Bureau of Mines.

Measure-	Tempera-	Emf	(E), mV	Measure-	Tempera-	Emf	(E), mV
ment	ture, K	Measured ¹	Calculated ²	ment	ture, K	Measured ¹	Calculated ²
1	1,172.8	314.68	314.59	12	1,213.7	311.97	312.12
2 • • • • • • •	1,174.7	314.48	314.48	13	1,214.9	311.77	312.05
3	1,174.8	314.47	314.47	14	1,228.8	311.23	311.21
4	1,175.0	314.08	314.46	15	1,231.6	311.52	311.04
5	1,175.2	314.57	314.44	16	1,232.3	311.42	311.00
6	1,189.8	313.34	313.56	17	1,232.7	311.12	310.97
7	1,191.6	313.73	313.45	18	1,240.9	311.10	310.48
8	1,192.1	313.92	313.42	19	1,248.7	309.87	310.01
9	1,193.2	313.03	313.36	20	1,250.1	309.67	309.92
10	1,212.2	312.17	312.21	21	1,252.8	309.26	309.76
11	1,212.8	311.87	312.18	22	1,260.0	309.24	309.33

TABLE 2. - Emf (E), of cell Pt, Ni, Cr_2O_3 , $NiCr_2O_4//ZrO_2//Cu_2O$, Cu, Pt

¹Average of 2 measurements (± 0.05 mV) taken at 20-min intervals and corrected for cell calibration.

 2 Calculated from linear equation E = (385.389 - 0.060368T)±0.32.

and standard error of estimate as follows:

 $E = (385.389 - 0.060368T) \pm 0.32;$

(1,172.8 - 1,260.0 K), (3)

where E is the emf expressed in millivolts. Smooth emf data derived from equation 3 are given in columns 4 and 8 of table 2. Representative emf-versus-temperature data are illustrated in figure 2.

The equilibrium oxygen pressure, pO_2 , over Ni + Cr_2O_3 + Ni Cr_2O_4 was determined from the potential measurements for cell reaction 2, which may also be expressed as

 $O_2(g, over Cu + Cu_20)$

$$= O_2(g, \text{ over Ni} + Cr_2O_3 + NiCr_2O_4).$$
 (4)

The corresponding standard Gibbs energy change for reaction 4 is

 $\Delta G(reaction 4) = -nFE$

 $= RT \ell npO_2 - RT \ell npO_2^{\dagger}, \quad (5)$

where n is 4, F is the Faraday constant, E is the emf from equation 3, and pO_2' is the oxygen pressure over the reference electrode (Cu + Cu₂O). Pressures are expressed in atmospheres (1 atm = 101.325 kPa). In the temperature range 1,100 to 1,300 K, the standard Gibbs energy of formation of $Cu_2 0$ from a critical analysis of published data (<u>11</u>) is expressed as

$$\Delta Gf^{\circ}(Cu_{2}O) = (-39.796 + 16.95 \times 10^{-3} T)$$

$$\pm 0.200$$
 kcal/mol, (6)

FIGURE 2.-Emf (E) versus temperature for NICr2O4 cell.

and the dissociation pressure of oxygen, pO_2^* , over Cu + Cu₂O in equations 4 and 5 may be expressed as

$$\log pO_{2}^{*} = -17,395/T + 7.40882.$$
 (7)

Rearranging equation 5 and substituting the value of $p0_2^1$ from equation 7 and E from equation 3 yields

$$\log pO_2 = -25,164/T + 8.62584.$$
 (8)

Figure 3 illustrates the thermodynamic stability of the Ni-Cr₂O₃-NiCr₂O₄-O₂ system. Reaction 4 and equation 5 are independent relationships that are applicable to any equilibrium involving oxygen. These values of pO_2 are the key for computing the standard Gibbs energy for the reaction

$$Ni(c) + Cr_2O_3(c) + 0.5 O_2(g)$$

= NiCr_2O_4(c) (9)

from the relationship

 $\Delta G^{\circ}(reaction 9) = -RTlnK_{9}$ $= 0.5RTlnpO_{2}, \qquad (10)$

where K_9 is the equilibrium constant for reaction 9, and the condensed phases are

FIGURE 3.—Equilibrium diagram for the Ni-Cr₂O₃-NiCr₂O₄ system.

assumed to have unit activity. Resolution of the equilibrium oxygen pressure provides a basis for the construction of equilibrium phase diagrams. The diagrams of the experimental data show the predominance areas of the various phases and the equilibria between them as a function of temperature and equilibrium oxygen pressure.

The lattice parameter of a solid solution generally changes with composition up to the saturation limit and then remains constant beyond that point. Lattice parameters of the components in the equilibrated electrode mixtures showed no major change from the lattice parameters of the reagents that were used to prepare electrode mixtures. Consequently, the intersolubility is negligible, and the foregoing assumption that the condensed phases have unit activity does not introduce any appreciable error in the Gibbs energy of formation of NiCr₂O_h in the temperature range of this investigation. Linear equations expressing the oxygen pressures and the standard Gibbs energy change for reaction 9 are given in table 3. Results of previous investigators are also presented in table 3.

A standard Gibbs energy of formation of $NiCr_2O_4$ was determined from the relationship

$$\Delta Gf^{\circ}(NiCr_2 O_{\mu}) = \Delta G^{\circ}(reaction 9)$$

$$+ \Delta Gf^{\circ}(Cr_2 O_3).$$
 (11)

Substituting the standard Gibbs energy change for reaction 9 as given in columns 4 and 5 of table 3 and the standard Gibbs energy of formation of Cr_2O_3 (12), expressed as

$$\Delta Gf^{\circ}(Cr_{2}O_{3}) = (-266.600 + 59.78 \times 10^{-3} T)$$

±0.350 kcal/mol, (12)

yields the following standard Gibbs energy of formation of $NiCr_2O_4$:

$$\Delta Gf^{\circ}(NiCr_{2}O_{4}) = (-324 \cdot 171 + 79 \cdot 51 \times 10^{-3} T)$$

$$\pm 0.403 \text{ kcal/mol};$$

$$(1,172 \cdot 8 - 1,260 \cdot 0 \text{ K}) \cdot (13)$$

2011年 ----

1 {	TABLE 3	3
5. 	Method	
	Emf	• • • •
	Que share	
	Gas phase	0.0
	lac ^o (ropotto	- (
an and a second se	-We (reactio	- (m
	ТА	BLE
9 80 A		kilo
	Tempera-	Tre
\$ 5	ture, K	
The second s	1,100	
1	1,150	
	1,200	
	1,250	

Thermodynamic data for Ni(c) + $Cr_2O_3(c)$ + 0.5 $O_2(g)$ = Ni $Cr_2O_4(c)$

Method	Temperature range K	log pO ₂ , atm	Standard Gibbs energy change,		Reference			
	Lange, n		ΔH°	-∆S°				
Emf	1,172.8-1,260.0	-25,164/T+ 8.62584	-57,571	19.73	This work.			
	1,000 -1,500	-30,061/T+11.12853	-68,774	25.46	Tretjakow (1).			
	1,300 -1,540	-32,080/T+ 8.40103	-73,394	19.22	Levitskii $(\overline{2})$.			
	1,013 -1,253	-29,939/T+11.00614	-68,494	25.18	Kozlowska-			
Gas phase					Rog (3).			
equilibration	1,073 -1,380	-34,936/T+15.30719	-79,926	35.02	Kunnmann (4).			
${}^{1}\Lambda G^{\circ}(reaction) = 0.5RT lnpO_{2} = \Lambda H^{\circ} - T\Lambda S^{\circ}.$								

4. - Standard Gibbs energy of formation (- ΔG°) for NiCr₂O₄, ocalories per mol

Tempera-	Tretjakow (<u>1</u>)	Levitskii (2)	Kozlowska-Rog (3)	Kunnmann (4)	This work
ture, K					
1,100	241.610	ND	241.538	242.246	ND
1,150	237.348	ND	237.290	237.506	232.735
1,200	233.086	ND	233.042	232.766	228.759
1,250	228.824	ND	228.794	228.026	224.784
1,300	224.562	237.294	ND	ND	ND
1,350	220.300	233.344	ND	ND	ND
1,400	216.038	229.394	ND	ND	ND
1,450	211.776	225.444	ND	ND	ND
1,500	207.514	221.494	ND	ND	ND

Not determined. ND

Results from this investigation together with those of previous investigators (1-4) are given at specified temperatures in table 4 and illustrated in figure 4. As noted in figure 4, the results from this investigation are slightly more positive than those reported by three previous investigators (1, 3-4). Although ΔS° for reaction 9 reported by Kunnmann, Rogers, and Wold (4) is much larger than that reported by the other two investigators (1, 3), figure 4 shows that the standard Gibbs energies of formation, ΔGf° , of NiCr₂O₄ for the three investigations are in good agreement. This is explained by the fact that to generate figure 4 from table 3 involves the standard Gibbs energy of Cr_2O_3 as given by equation 12. The difference in ΔS° for reaction 9 is largely overwhelmed by the temperature coefficient term of equation 12. Results of another investigation (2) are above the temperature range of this investigation and approximately 13 kcal/mol more

FIGURE 4.-Standard Glbbs energy change for NI(c) + $2Cr(c) + 2O_2(g) = NICr_2O_4(c).$

negative than those of a similar emf investigation (1). Slow diffusion rate in the solid phases and failure to achieve equilibrium are the probable causes for these discrepancies. Precautions taken in this investigation included careful preparation of the electrode mixture, Xray diffraction analyses of the electrode mixtures before and after experiments, and allowing 8 to 16 h at each temperature to achieve stable equilibrium potential measurements.

A standard Gibbs energy of formation of $\rm NiCr_2O_4$ can also be obtained directly from the cell potentials of reaction 2 and the relationship

$$\Delta G^{\circ}(\text{reaction } 2) = -nFE = \Delta Gf^{\circ}(\text{Ni}Cr_2O_{\mu})$$

 $- \Delta Gf^{\circ}(Cr_2O_3) - \Delta Gf^{\circ}(Cu_2O).$ (14)

In equation 14, n = 2. Rearranging equation 14 and substituting the value of E from equation 3 and the standard Gibbs energies of Cu_2O (11) and Cr_2O_3 (12) from equations 6 and 12, respectively, yields

 $\Delta Gf^{\circ}(NiCr_2O_4) = (-324.171 + 79.51 \times 10^{-3}T)$

±0.403 kcal/mol;

(1,172.8-1,260.0 K). (15)

Equations 13 and 15 are identical. This is to be expected because the standard Gibbs energy of formation of Cu_2O is

involved in both methods for resolution of the Gibbs energy of formation of NiCr_2O_4.

 $CoCr_2 O_{\mu}$

The equilibrium oxygen pressure of the $Co-Cr_2O_3-CoCr_2O_4-O_2$ system and the standard Gibbs energy of formation of $CoCr_2O_4$ were determined by measuring the potentials of the high-temperature cell

with the overall cell reaction

$$Co(c) + Cr_2 O_3(c) + Cu_2 O(c)$$

= 2Cu(c) + CoCr_2 O_4(c). (16)

Potential measurements from four cells that were used for the $\operatorname{CoCr}_2 O_4$ determination are given in table 5. These results may be expressed as a function of temperature by the linear equation and standard error of estimate.

$$E = (1,164.8053 - 0.483378T) \pm 0.77, \quad (17)$$

where E is the emf in millivolts. Smooth emf values derived from equation 17 are given in columns 4 and 8 of table 5. Representative emf-versus-temperature data are illustrated in figure 5.

TABLE 5. - Emf (E) of cell Pt, Co, Cr_2O_3 , $CoCr_2O_4//ZrO_2//Cu_2O$, Cu, Pt

Magginta	Tomoore	Traf		Maggung	Tompono	Enf	(E) mV
measure-	Tempera-	Emi	(E), mv	measure-	Tempera-	Eilli.	(E), mv
ment	ture, K	Measured ¹	Calculated ²	ment	ture, K	Measured ¹	Calculated ²
1	1,173.5	598.66	597.56	12	1,232.4	568.56	569.09
2	1,174.7	596.31	596.98	13	1,232.7	567.66	568.95
3	1,175.0	596.96	596.84	14	1,234.0	568.44	568.32
4	1,175.3	596.01	596.69	15	1,235.4	567.37	567.64
5	1,193.7	587.85	587.80	16	1,235.7	567.44	567.50
6	1,194.0	586.43	587.65	17	1,248.8	561.37	561.16
7	1,195.5	587.40	586.93	18	1,252.2	560.67	559.52
8	1,215.5	580.64	577.26	19	1,254.9	558.16	558.21
9	1,214.5	577.89	577.74	20	1,256.2	557.42	557.59
10	1,215.7	577.44	577.16	21	1,256.3	557.22	557.54
11	1,232.0	568.96	569.28				

¹Average of 2 measurements (± 0.05 mV) taken at 20-min intervals and corrected for cell calibration.

²Calculated from linear equation $E = (1, 164.8053 - 0.483378T) \pm 0.77$.

The equilibrium oxygen pressure, pO_2 , over Co + Cr_2O_3 + $CoCr_2O_4$ was obtained by the method previously described for reaction 4. Rearranging equation 5 and substituting values of pO_2^{\prime} from equation 7 and E from equation 17 yields

$$\log pO_2 = -40,877/T + 17.15372.$$
 (18)

Figure 6 illustrates the thermodynamic stability of the $Co-Cr_2O_3-CoCr_2O_4-O_2$ system. The standard Gibbs energy for the reaction

$$Co(c) + Cr_2O_3(c) + 0.5 O_2(g)$$

= $CoCr_2O_4(c)$ (19)

(20)

is obtained from the relationship

 $\Delta G^{\circ}(\text{reaction 19}) = -RT \ell n K_{19}$ $= 0.5 RT \ell n p O_2,$

where K_{19} is the equilibrium constant for reaction 19, and the condensed phases are assumed to have unit activity.

Lattice parameter measurements of the electrode components showed no major change from the lattice parameters of the reagents that were used to prepare the electrode mixtures. Consequently, intersolubility between the electrode components is negligible and the foregoing assumption is justified. Linear equations expressing the oxygen pressures and standard Gibbs energies for reaction 19 from this investigation, together with the results of previous investigators, are given in table 6.

A standard Gibbs energy of formation of CoCr_2O_4 was determined from the relationship

 $\Delta Gf^{\circ}(CoCr_2O_4) = \Delta G^{\circ}(reaction 19) + \Delta Gf^{\circ}(Cr_2O_3). \quad (21)$

Substituting the standard Gibbs energy for reaction 19 as given in columns 4 and 5 of table 6 and the standard Gibbs energy of formation of Cr_2O_3 from equation 12 yields

FIGURE 5.-Emf (E) versus temperature for CoCr2O4 cell.

FIGURE 6.—Equilibrium diagram for the $Co-Cr_2O_3-CoCr_2O_4$ system.

8

			Standard	Gibbs			
Method	Temperature	log pO ₂ , atm	energy c	hange,	Reference		
	range, K	- £m	cal ¹				
			∆H°	-∆S°			
Emf	1,173.5-1,256.3	-40,877/T+17.15372	-93,519	39.24	This work.		
	1,000 -1,500	-32,813/T+ 9.79538	-75,070	22.40	Tretjakow (1).		
	1,270 -1,490	-33,899/T+10.18877	-77 , 555	23.31	Levitskii (6).		
Gas phase							
equilibration	1,073 -1,380	-38,214/T+14.02212	-87,427	32.08	Kunnmann (<u>4</u>).		
${}^{1}\Delta G^{\circ}(\text{reaction}) = 0.5 \text{RT} \ln pO_{2} = \Delta H^{\circ} - T\Delta S^{\circ}.$							

TABLE 6. - Thermodynamic data for $Co(c) + Cr_2O_3(c) + 0.5 O_2(g) = CoCr_2O_4(c)$

 $\Delta Gf^{\circ}(CoCr_{2}O_{4}) = (-360.119 + 99.02 \times 10^{-3}T)$

±0.405 kcal/mol;

(1,173.5-1,256.3 K). (22)

Standard Gibbs energies of formation of $CoCr_2O_4$ at specified temperatures are presented in table 7 together with the results of previous investigators (1, 4, 6). Figure 7 shows that the results from

FIGURE 7.—Standard Gibbs energy change for Co(c) + $2C_1(c) + 2O_2(g) = C_0C_1^2O_4(c)$.

this investigation agree well with those reported in a gas phase equilibration investigation (4), but are more positive than the data obtained by two previous emf investigations (1, 6). These discrepancies are probably caused by the low diffusion rate in the solid-state reaction of the cobalt chromite electrode and failure to achieve equilibrium. Although precautions similar to those mentioned for the NiCr₂O₄ determination were taken, some errors may have been introduced by failure to achieve reversible equilibrium potentials. Considerable difficulty was encountered in obtaining reversible measurements with decreasing temperature, even after allowing 16 h to equilibrate; consequently, most of the measurements for CoCr₂O₄ were obtained with increasing temperatures.

A standard Gibbs energy of formation can also be derived directly from the cell potentials of reaction 16 and the relationship

$$\Delta G^{\circ}(\text{reaction } 16) = -nFE = \Delta Gf^{\circ}(CoCr_{2}O_{4})$$

$$- \Delta Gf^{\circ}(Cr_2 O_3) - \Delta Gf^{\circ}(Cu_2 O). \qquad (23)$$

In equation 23, n = 2. Rearranging equation 23 and substituting the value of E from equation 17 and the standard Gibbs energies of formation of Cu₂O and Cr₂O₃ from equations 6 and 12, respectively, yields

 $\Delta Gf^{\circ}(CoCr_2O_4) = (-360.119 + 99.02 \times 10^{-3} T)$

±0.405 kcal/mol;

(1,173.5-1,256.3 K). (24)

Tempera-	Tretjakow (1)	Levitskii (6)	Kunnmann (4)	This work
ture, K	-			
1,100	-251.261	ND	-250.408	ND
1,150	-247.152	ND	-245.815	-246.246
1,200	-243.042	ND	-241.222	-241.295
1,250	-238.933	-240.293	-236.629	-236.344
1,300	-234.823	-236.138	-232.036	ND
1,350	-230.714	-231.984	-227.443	ND
1,400	-226,604	-227.829	ND	ND
1,450	-222.495	-223.675	ND	ND
1,500	-218.385	-219.520	ND	ND
ND Not determined				

TABLE 7. - Standard Gibbs energy of formation $(-\Delta Gf^{\circ})$ for $CoCr_2O_4$, kilocalories per mol

ND Not determined.

Equations 22 and 24 are identical, which is to be expected since the standard Gibbs energy of formation of Cu_2O is

involved in both methods for derivation of the standard Gibbs energy of formation of CoCr_2O_4 .

SUMMARY AND CONCLUSIONS

Equilibrium oxygen pressures for the Ni-Cr₂O₃-NiCr₂O₄-O₂ and Co-Cr₂O₃-CoCr₂O₄-O₂ systems were determined by a high-temperature emf measurement method using stabilized ZrO_2 as the solid

electrolyte. The emf measurements yielded the standard Gibbs energies of formation of $NiCr_2O_4 + CoCr_2O_4$ that are expressed as follows:

 $\Delta Gf^{\circ}(NiCr_{2}O_{\mu}) = (-324.171 + 79.51 \times 10^{-3}T) \pm 0.403 \text{ kcal/mol};$

(1,172.8-1,260.0 K)

and

 $\Delta Gf^{\circ}(CoCr_{2}O_{4}) = (-360.119 + 99.02 \times 10^{-3} T) \pm 0.405 \text{ kcal/mol};$

(1,173.5-1,256.3 K).

REFERENCES

1. Tretjakow, J. D., and H. Schmalzried. Zur Thermodynamik von Spinellphasen (The Thermodynamics of Spinel Phases--Chromite, Ferrite, Aluminate). Ber. Bunsenges. Phys. Chem., v. 69, 1965, pp. 396-402.

2. Levitskii, V. A., T. N. Rezukhina, and V. G. Dneprova. Measurement of the EMF From Galvanic Cells With a Solid Electrolyte Above 1,100° C. Thermodynamic Properties of Nickel Chromite. Elektrokhimiya, v. 1, No. 8, 1965, pp. 933-940.

3. Kozlowska-Rog, A., and G. Rog. Thermodynamics of Nickel Chromite. Pol. J. Chem., v. 47, 1973, pp. 869-870.

4. Kunnmann, W., D. B. Rogers, and A. Wold. The Use of CO-CO₂ Atmospheres for the Preparation and Free Energy Determinations of Several Oxide Systems. J. Phys. and Chem. Solids, v. 24, 1963, pp. 1535-1538.

5. Muller, F., and O. J. Kleppa. Thermodynamics of Formation of Chromite Spinels. J. Inorg. and Nucl. Chem., v. 35, 1973, pp. 2673-2678.

6. Levitskii, V. A., T. N. Rezukhina, and A. S. Guzei. The Thermodynamic Properties of Cobalt Chromite From Electrochemical Measurements At 1270-1490 K. Elektrokhimiya, v. 1, No. 2, 1965, pp. 237-239.

7. Aukrust, E., and A. Muan. The Stabilities of $CoO \cdot Al_2O_3$, $CoO \cdot Cr_2O_3$, and $2CoO \cdot SiO_2$. J. Am. Ceram. Soc., v. 46, 1963, p. 358.

8. Kiukkola, K., and C. Wagner. Measurements on Galvanic Cells Involving Solid Electrolytes. J. Electrochem. Soc., v. 104, 1957, pp. 379-387. 9. Steele, B. C. H., and C. B. Alcock. Factors Influencing the Performance of Solid Oxide Electrolytes in High-Temperature Thermodynamic Measurements. Trans. Metall. Soc. AIME, v. 233, 1965, 1359-1367.

10. Schaefer, S. C. Electrochemical Determination of the Gibbs Energy of Formation of Sphalerite, (ZnS). BuMines RI 8301, 1978, 16 pp.

11. Pankratz, L. B. Thermodynamic Properties of Elements and Oxides. Bu-Mines B 672, 1982, 509 pp.

12. Mazandarany, F. N., and R. D. Pehlke. Standard Free Energy of Formation of Cr_2O_3 . J. Electrochem. Soc., v. 121, 1974, pp. 711-714.